A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm.
نویسندگان
چکیده
Pseudomonas chlororaphis PA23 is a biocontrol agent that protects against the fungal pathogen Sclerotinia sclerotiorum. Employing transposon mutagenesis, we isolated a gacS mutant that no longer exhibited antifungal activity. Pseudomonas chlororaphis PA23 was previously reported to produce the nonvolatile antibiotics phenazine 1-carboxylic acid and 2-hydroxyphenazine. We report here that PA23 produces additional compounds, including protease, lipase, hydrogen cyanide, and siderophores, that may contribute to its biocontrol ability. In the gacS mutant background, generation of these products was markedly reduced or delayed with the exception of siderophores, which were elevated. Not surprisingly, this mutant was unable to protect canola from disease incited by S. sclerotiorum. The gacS mutant was able to sustain itself in the canola phyllosphere, therefore, the loss of biocontrol activity can be attributed to a reduced production of antifungal compounds and not a declining population size. Competition assays between the mutant and wild type revealed equivalent fitness in aged batch culture; consequently, the gacS mutation did not impart a growth advantage in the stationary phase phenotype. Under minimal nutrient conditions, the gacS-deficient strain produced a tenfold less biofilm than the wild type. However, no difference was observed in the ability of the mutant biofilm to protect cells from lethal antibiotic challenge.
منابع مشابه
PtrA Is Functionally Intertwined with GacS in Regulating the Biocontrol Activity of Pseudomonas chlororaphis PA23
In vitro inhibition of the fungal pathogen Sclerotinia sclerotiorum by Pseudomonas chlororaphis PA23 is reliant upon a LysR-type transcriptional regulator (LTTR) called PtrA. In the current study, we show that Sclerotinia stem rot and leaf infection are significantly increased in canola plants inoculated with the ptrA-mutant compared to the wild type, establishing PtrA as an essential regulator...
متن کاملThe role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum
Pseudomonas chlororaphis strain PA23 has demonstrated excellent biocontrol in the canola phyllosphere. This bacterium produces the non-volatile antibiotics phenazine and pyrrolnitrin as well as the volatile antibiotics nonanal, benzothiazole and 2-ethyl-1-hexanol. In vitro experiments were conducted to study the effects of different mutations on the production of these three organic volatile an...
متن کاملThe PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23.
The aim of the current study was to determine how quorum sensing (QS) affects the production of secondary metabolites in Pseudomonas chlororaphis strain PA23. A phzR mutant (PA23phzR) and an N-acylhomoserine lactone (AHL)-deficient strain (PA23-6863) were generated that no longer inhibited the fungal pathogen Sclerotinia sclerotiorum in vitro. Both strains exhibited reduced pyrrolnitrin (PRN), ...
متن کاملPyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans
Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN), and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rs...
متن کاملInactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere.
Quorum-sensing-controlled processes are considered to be important for the competitiveness of microorganisms in the rhizosphere. They affect cell-cell communication, biofilm formation, and antibiotic production, and the GacS-GacA two-component system plays a role as a key regulator. In spite of the importance of this system for the regulation of various processes, strains with a Gac(-) phenotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Canadian journal of microbiology
دوره 52 12 شماره
صفحات -
تاریخ انتشار 2006